A Molecular Dynamics Study of the Thermal Boundary Conductance of
Stacked Two-Dimensional Materials

by

Klas Karis

Thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science in Physics
in the Graduate College of the
University of Illinois at Chicago, 2017

Chicago, Illinois

Defense Committee:
Fatemeh Khalili-Araghi, Chair and Advisor
Robert F. Klie
Ursula Perez-Salas
ACKNOWLEDGMENTS

I want to thank my supervisor Dr. Fatemeh Khalili-Araghi for her support and guidance in the work I have done for this thesis. Without her advice and help, it would not have been possible. I also want to thank my friends for the discussions we have had that helped me in the work process.

The work done in this thesis has in collaboration with the groups of Dr. Salehi-Khojin and Dr. Aksamija, resulted in a publication [1] and I want to express my gratitude for the opportunity to work together with them.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 2D materials and Microelectronic Devices</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Objectives</td>
<td>2</td>
</tr>
<tr>
<td>2 HEAT CONDUCTION AND MOLECULAR DYNAMICS SIMULATIONS</td>
<td>3</td>
</tr>
<tr>
<td>2.1 Heat Flow and Thermal Conductivity</td>
<td>3</td>
</tr>
<tr>
<td>2.2 Molecular Dynamics Simulations</td>
<td>4</td>
</tr>
<tr>
<td>2.3 Non-Equilibrium MD and Heat Flow</td>
<td>5</td>
</tr>
<tr>
<td>3 METHODS</td>
<td>7</td>
</tr>
<tr>
<td>3.1 Simulation Details</td>
<td>7</td>
</tr>
<tr>
<td>3.2 Detailed System Setup</td>
<td>8</td>
</tr>
<tr>
<td>4 RESULTS AND DISCUSSION</td>
<td>11</td>
</tr>
<tr>
<td>4.1 Results</td>
<td>11</td>
</tr>
<tr>
<td>5 CONCLUSIONS</td>
<td>16</td>
</tr>
<tr>
<td>APPENDICES</td>
<td>17</td>
</tr>
<tr>
<td>Appendix A</td>
<td>18</td>
</tr>
<tr>
<td>CITED LITERATURE</td>
<td>24</td>
</tr>
<tr>
<td>VITA</td>
<td>28</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>CALCULATED THERMAL BOUNDARY CONDUCTANCES</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Representation of the heat sources (red) and the heat sinks (blue) for each of the four systems simulated.</td>
</tr>
<tr>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Snapshots of the four simulation systems consisting of Ti, MoS$_2$, and SiO$_2$.</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>MD</td>
<td>Molecular Dynamics</td>
</tr>
<tr>
<td>NEMD</td>
<td>Non-Equilbrium Molecular Dynamics</td>
</tr>
<tr>
<td>LAMMPS</td>
<td>Large-scale Atomic/Molecular Massively Parallel Simulator</td>
</tr>
<tr>
<td>NVT</td>
<td>Constant number (N), volume (V), and temperature (T)</td>
</tr>
<tr>
<td>NVE</td>
<td>Constant number (N), volume (V), and Energy (T)</td>
</tr>
<tr>
<td>TBC</td>
<td>Thermal Boundary Conductance</td>
</tr>
<tr>
<td>2D</td>
<td>Two-Dimensional</td>
</tr>
<tr>
<td>Ti</td>
<td>Titanium</td>
</tr>
<tr>
<td>MoS₂</td>
<td>Molybdenum disulphide</td>
</tr>
<tr>
<td>SiO₂</td>
<td>Silicon dioxide</td>
</tr>
<tr>
<td>UIC</td>
<td>University of Illinois at Chicago</td>
</tr>
</tbody>
</table>
SUMMARY

With the components driving information technology becoming ever smaller and reaching their limits in size, there has been a shift in focus to develop devices were 2D materials, such as graphene and MoS$_2$, act as the main functional component, due to their often superior electrical properties to current materials used. Replacing the conductors in transistors for example, were relatively high voltages are applied at high frequencies, with 2D materials, is a very attractive approach for reaching smaller scale, better performing, electronic devices. However, the resistive heating in such devices is a challenge for the same reason, thus careful consideration must be taken in developing and designing it to ensure that heat can dissipate efficiently from the source, which is mostly in the through-plane direction. Efforts have been made to experimentally measure the thermal boundary conductance (TBC) of the interface of MoS$_2$ with SiO$_2$, but so far there is no consensus on the value. [2, 3, 4]

When measuring the TBC of a 2D material in experiments, it is not measured directly, but rather inferred from the difference in conductivity between a device with the 2D material inserted, and one without. While the surfaces of the materials by the interface can be observed using microscopy techniques during the production of the device, the surface interactions at an atomic level during a cross-planar heat flow are not easily measured, and this is were molecular dynamics (MD) simulations plays an important role: with atomic resolution and with the capability of enforcing heat-flows, the interfaces of the 2D material can be investigated in needed detail to complement the experimental measurements and enrich the analysis. [5]
SUMMARY (Continued)

In this thesis, the first Chapter introduces the reader to the context and the goals of the work. Chapter 2 goes into more detail of explaining thermal conductivity and TBC and what simulation methods were used. Chapter 3 explains how the simulations were set up in detail. In Chapter 4 the results are presented and discussed. Finally, in Chapter 5 concluding remarks are made in the context of experimental results.
CHAPTER 1

INTRODUCTION

1.1 2D materials and Microelectronic Devices

When it comes to 2D materials, such as graphene and transition metal dichalcogenides like MoS$_2$ used in this study, they have amassed a large amount of interest the past decade due to their exciting properties, such as high electric conductivity, optical and mechanical properties. (6; 7; 8; 9; 10; 11) One of the potential new applications is to replace silicon in traditional semiconductors devices, such as transistors. In a transistor, the 2D material would be embedded between layers of different materials, with resistive heating being prominent during operation. Because of the heat being generated in such small regions, it is important to have efficient heat removal to avoid device failure from overheating. (12) The majority of the heat is dissipated out of the plane of the 2D material and the rate at which heat can be removed is limited by the thermal boundary conductance (TBC) associated with the interfaces below and above the plane.

Knowing what the TBC contributes to the total conductance and how it is affected by the surrounding materials is key to arriving at fully functional, nanoscale electronics based on 2D materials. But despite a lot of effort in recent years, there is an order of magnitude difference between reported values. (2; 3; 4; 13) The TBC can be found from measuring the discontinuity
in the temperature, ΔT, across the interface at a given the heat flux, J, per cross-sectional area A:

$$\frac{J}{A} = \sigma_K \Delta T$$ \hspace{1cm} (1.1)

were σ_K is the TBC. Directly measuring ΔT, however, is impractical experimentally, and is typically inferred by measuring the difference in overall thermal conductivity of a test device with and without the 2D material. [1]

1.2 Objectives

The inability to directly measure the TBC of a device is a typical scenario were molecular dynamics (MD) simulations can provide valuable insight on an atomic scale to complement experiments. MD simulations have been used to measure thermal conductivity and TBC successfully for more than a decade [5][14], and are well suited to investigate the TBC of the 2D material in a test device.

In the work presented in this thesis, the objectives are 1. to directly model the heat transfer normal to the surface of MoS$_2$ while stacked between Ti and SiO$_2$ and calculate the TBC of the interfaces using MD simulations and 2. to compare the TBC of the stacked system to systems with Ti-MoS$_2$ and MoS$_2$-SiO$_2$ only to assess the effect of stacking.
CHAPTER 2

HEAT CONDUCTION AND MOLECULAR DYNAMICS SIMULATIONS

2.1 Heat Flow and Thermal Conductivity

Thermal conductivity is the measure of the capacity of a material to transport heat and relates heat flux, G, to a temperature gradient, ∇T via Fourier’s Law:

$$G = -K \nabla T$$ \hspace{1cm} (2.1)

that is, the heat flux through a surface is proportional to the negative temperature gradient across the surface, were the thermal conductivity, K, is the constant of proportionality. The fact that heat is transported in the system means that it is not in thermal equilibrium since $\nabla T \neq 0$.

When calculating the bulk thermal conductivity K, one assumes that the material within which the heat is transported is homogenous and continuous. Here, continuous assumes an unbroken crystal structure in the case of crystalline materials. When there is a grain boundary in a crystal or when the surfaces of two materials that are held together by Van der Waals forces are considered, the thermal conductivity abruptly changes over a very short distance. This impacts the transport of heat through lattice vibrations, or phonons, which is the largest contributor to the total dissipated heat, across the interface. Because of this imperfect contact of the two sides of the interface, there is a finite thermal boundary conductance (TBC) or Kapitza
conductance σ_K, associated with it and therefore also a discontinuity in the temperature, ΔT.

The heat flow per area supported by the interface is given by the product of the conductance with the temperature discontinuity ΔT_{dis}.

$$\frac{J}{A} = \sigma_K \Delta T_{\text{dis}}$$ \hspace{1cm} (2.2)

Thus, with knowledge of the cross-sectional area A, the heat flow J and the discontinuity in temperature ΔT_{dis} at the interface, one can calculate the TBC for that interface.

2.2 Molecular Dynamics Simulations

Molecular dynamics simulations is a tool were the motion of particles in a classical system are described at the atomic scale by Newton’s equations of motion. A numerical integration method is used to propagate an N-particle system in time by evaluating the forces between pairs of particles at discrete time steps with a separation in time on the order of femtoseconds (10^{-15} s). The small time-step is necessary to capture the high frequency in the vibrations of molecular bonds which are up to the order of 10^{14} Hz. Although there is a multitude of numerical integration methods that one would naively use, not all of them are suited for use in MD simulations. A good time-integration method need to fulfill things such as conservation of energy and momentum, time-reversibility and conservation of phase-space volume. \cite{16, 17} Among the most used methods are the Verlet \cite{18}, Leap Frog \cite{19} and the Verlet-Velocity \cite{20} methods, which all fulfill the mentioned requirements.
The forces are evaluated from a so called "force field" describing the interaction potential between all types of particles in the system. It is a sum of different types of potentials where each potential function usually describe different types of interactions, such as coulombic interactions for charged particles or Van der Waals interactions for non-polar, uncharged particles.

2.3 Non-Equilibrium MD and Heat Flow

The use of MD simulations to monitor non-equilibrium transport processes, is almost as old as the development of MD simulations themselves \([21;22;23]\), dating back to the 1950's. With the power to manipulate a system in almost any way possible, MD simulations are particularly suited to induce heat flows artificially in equilibrium systems.

One of the advantages in using non-equilibrium molecular dynamics (NEMD) to calculate the thermal conductivity and the TBC is that in a system with an interface, the discontinuity in the temperature, \(\Delta T_{\text{dis}}\), can be used to calculate the TBC using Equation 2.2, while the temperature gradients in the bulk materials away from the interface can be used to obtain the thermal conductivity, \(K\), through Equation 2.1 or Equation 2.4 below.

The NEMD setup used in the simulations follow the algorithm described by T. Ikeshoji and B. Hafskjold in 1994. \([5]\) The algorithm relies on establishing a temperature gradient in the system between a heat source and a heat sink and measuring the heat energy \(Q\) transferred between them per unit time. The simulation setup have the source and sink regions kept at different constant temperatures while the outside region is simulated at constant energy and the whole system is simulated at constant volume. The source and sink are coupled to heat baths at separate temperatures \(T_h\) and \(T_c\), respectively. By monitoring the added heat at the
source or the removed heat from the sink over time, since they are equal under steady state condition, the heat flow, \(J = \frac{\Delta Q}{\Delta t} \), can be obtained. The bulk thermal conductivity, \(K \), is then calculated as the heat flow per area per temperature difference, multiplied by the length over which the temperature difference is measured. Putting all the above knowledge together, we have the following equations to rely on when calculating the thermal conductance \(K \) and the TBC \((\sigma_K) \)

\[
J = \frac{\Delta Q}{\Delta t} \quad (2.3)
\]

\[
K = \frac{J}{A\Delta T_{\text{bulk}}}L \quad (2.4)
\]

\[
\sigma_K = \frac{J}{A\Delta T_{\text{dis}}} \quad (2.5)
\]

Here, \(\Delta Q \) is sampled over the simulation time \(\Delta t \), while \(A \) is the cross sectional area of the material in the plane normal to the heat flow \(J \). \(\Delta T_{\text{bulk}} \) is the temperature difference over length \(L \) in the bulk material and \(\Delta T_{\text{dis}} \) is the discontinuity in the temperature across the interface. In the case of a material without any grain boundaries or surfaces, \(\Delta T_{\text{bulk}} \) is just the difference in temperature between the source and the sink: \(\Delta T_{\text{bulk}} = T_h - T_c \).
CHAPTER 3

METHODS

(Figure 1 and Section 3.2 are adapted from the Supplementary Information of my publication [1] with the following citation:

The written permission for reuse from the journal is found in appendix A)

3.1 Simulation Details

Four sets of simulations were conducted using different combinations of materials: Ti-MoS$_2$, MoS$_2$-SiO$_2$, Ti-MoS$_2$-SiO$_2$ and Ti-SiO$_2$. The full system containing Ti, MoS$_2$ and amorphous SiO$_2$, and the system with only Ti and SiO$_2$ called the "control", were run to be compared with experimentally available TBC values extracted by collaborators from Salehi-Khojin’s group.

In addition to comparing simulations to experimental systems, two simulations with only Ti-MoS$_2$ and MoS$_2$-SiO$_2$, were conducted to investigate the contribution to the overall TBC from each of the interfaces with MoS$_2$.

The molecular dynamics (MD) simulations were carried out using the software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) [24] and the thermal conductivi-
ties were calculated from non-equilibrium molecular dynamics (NEMD) simulations. The bulk conductivity (K) of the SiO$_2$ and Ti substrates as well as the Kapitza conductance (TBC) of MoS$_2$-substrate boundaries were calculated from NEMD trajectories, in which a temperature gradient was imposed across a thermally equilibrated system while being kept at constant energy and volume. After reaching a steady state, the heat flow was monitored by measuring the amount of heat required to maintain the temperature gradient and was used to calculate the thermal conductivities from Equation 2.4 and Equation 2.5. The interatomic potentials in SiO$_2$, MoS$_2$, and Ti were modeled using the Tersoff (26), Stillinger-Weber (27) and Embedded Atom Method (28) forcefields, respectively. The Van der Waals interactions between MoS$_2$ and each substrate were described by 6-12 Lennard-Jones potentials (29; 30; 31) with parameters for mixed interactions calculated using the Lorenz-Berthelot mixing rules. Simulations were carried out at constant volume using periodic boundary conditions in the x-and y-directions and at a time step of 0.1 fs. For equilibrium simulations in the NVT ensemble, the temperature was kept constant using the Nosé-Thermostat of LAMMPS. (34)

3.2 Detailed System Setup

The initial structure of Ti and MoS$_2$ were built from their crystallographic structures. The amorphous structure of SiO$_2$ was created by heating up a SiO$_2$ crystal to 7000 K in 0.5 ns of simulation followed by 1 ns of equilibration at 7000 K and cooling down to 300 K in 2 ns. These simulations were performed at a constant volume that matches the size of the Ti and MoS$_2$ in the x-y plane. The size of the simulation cell for all systems was chosen such that the cell included an integer number of crystallographic building blocks of Ti and MoS$_2$.
The resulting systems were 108.15 Å by 106.15 Å in the x-y plane. The thickness in z were
55 Å and 110 Å, for Ti and SiO$_2$ respectively. The systems were minimized and subsequently
equilibrated in the NVT ensemble for a minimum of 20 ps. Equilibration was assumed to
be reached when the total system energy plateaued. To calculate the thermal conductivity, a
temperature gradient was set up in the equilibrated systems normal to the material interfaces
and the system was simulated in the NVE ensemble. The heat flux was monitored until the
system reached a steady state which was typically achieved in 100 to 300 ps. Under steady
state conditions, by knowing the temperature drop across the interfaces, the thermal boundary
conductance was calculated using the accumulated heat added to or removed from the hot and
cold regions, respectively, during the length of the simulation using Equation 2.5. All heat flux
simulations used for data collection were run for 1 ns or until the statistical error associated
with the total heating/cooling was less than 10%. Temperature profiles along the z-axis were
acquired by dividing the system into equal sized bins of 10 Å in width and calculating the
average temperature from atomic velocities for each bin over the total simulation time. The
jump in temperature across the boundary used in the calculation of the boundary conductance
was measured as the difference in temperature between the two bins adjacent to each other on
each side of the boundary. For the Ti-MoS$_2$-SiO$_2$, Ti-MoS$_2$ and Ti-SiO$_2$ systems, a slab with
a thickness of 10 Å at the upper end of the Ti was set to be the heat source. For the MoS$_2$-
SiO$_2$ system, the entire MoS$_2$ sheet was the heat source. In the Ti-MoS$_2$-SiO$_2$, MoS$_2$-SiO$_2$ and
Ti-SiO$_2$ systems, the heat sink was set as a 10 Å slab at the lower end of the SiO$_2$. For the
Ti-MoS$_2$ system, the heat sink was set up in the MoS$_2$ sheet (see Figure 1).
Figure 1: Representation of the heat sources (red) and the heat sinks (blue) for each of the four systems simulated. In Ti and SiO$_2$, the thermostatted regions are approximately 10 Å thick. In MoS$_2$ the whole layer acts source/sink.
CHAPTER 4

RESULTS AND DISCUSSION

(Table I and Figure 2 is adapted from my publication (1) with the following citation:
Poya Yasaei, Cameron J. Foss, Klas Karis, Amirhossein Behranginia, Ahmed I. El-Ghandour,
Arman Fathizadeh, Javier Olivares, Arnab K. Majee, Craig D. Foster, Fatemeh Khalili-Araghi,
Zlatan Aksamija, and Amin Salehi-Khojin, "Interfacial Thermal Transport in Monolayer MoS\(^2\)-
The written permission for reuse from the journal is found in appendix A)

4.1 Results

The obtained temperature profiles for each system are plotted in Figure 2 together with the
system it was extracted from. The obtained TBC values for the interfaces of each system are
listed in Table I. The bulk thermal conductivities were calculated using the temperature gradient
in each material. For the full system, the individual TBC values for Ti/MoS\(^2\) and MoS\(^2\)/SiO\(_2\)
were calculated using the jump in temperature at the corresponding interface, while the TBC
for Ti/SiO\(_2\) across MoS\(^2\) was calculated with the jump in temperature between Ti and SiO\(_2\),
ignoring the temperature of MoS\(^2\). This resembles how the TBC at the Ti/SiO\(_2\) interface with
MoS\(^2\) inserted is inferred in experiments and can thus be used for comparison to experiments.

The bulk thermal conductivity of Ti and SiO\(_2\) were found to be 2.6 and 0.9 W m\(^{-1}\) K\(^{-1}\),
respectively. While the finite size of the system is not expected to affect the TBC of the
boundaries, it may affect the bulk conductivity of the substrates calculated from the simulations. The value for SiO\textsubscript{2} compares well to known experimental values of 1.1 - 1.4 W m-1 K-1. \cite{35} The value for Ti, however, is well below the experimental value of 21.9 W m-1 K-1. \cite{36} This is explained by the fact that MD simulations do not include the electronic contribution to the thermal conductivity. This contribution is estimated to 19.44 W m-1 K-1 using Wiedemann-Franz law \cite{37} and using standard values of electrical conductivity and Lorentz number of 2.4\times106 S m-1 and 2.7\times10-8 W Ω K-2. \cite{36,38} Subtracting the electronic contribution from the experimental value of the total thermal conductivity of Ti gives a phonon contribution of 2.46 W m-1 K-1 which is close to the result from the MD simulations.

In the control simulation where MoS\textsubscript{2} is not present, the TBC at the Ti/SiO\textsubscript{2} interface is 57.7 MW m-2 K-1. With the MoS\textsubscript{2} inserted in the system, the TBC calculated for Ti to SiO\textsubscript{2} is lowered to 10.9 MW m-2 K-1. However, comparing single interfaces with each other, the TBC between MoS\textsubscript{2} and Ti calculated in the single interface system is 7.9 MW m-2 K-1, while for the stacked system the same interface has a TBC of 13.7 MW m-2 K-1, an increase of about 70 %. A more pronounced increase, with a factor of 3.5, for the TBC is seen at the interface between MoS\textsubscript{2} and SiO\textsubscript{2}, where the single interface system has a value of 15.6 MW m-2 K-1 and the interface in the stacked system is 54.6 MW m-2 K-1.

The first thing to note about the results of the TBC is that for the system without MoS\textsubscript{2}, the value for the Ti/SiO\textsubscript{2} is within the range of experimental values. The value obtained with MoS\textsubscript{2} inserted is not as close being about 50 % of the experimental value, but considering the
one order of magnitude discrepancy in the literature mentioned in the introduction this is still an acceptable result.

Interestingly, the comparison of TBC between the single interface systems with the fully stacked system shows that the interfaces of MoS$_2$ with Ti and SiO$_2$, respectively, can not be acquired individually and then used in a stacked system as two independent interfaces, and a full system analysis is needed to arrive at correct TBC values.

The most intriguing result, however, is that the TBC for the MoS$_2$/SiO$_2$ interface in the stacked system, $54.6 \text{ MW m}^{-2} \text{ K}^{-1}$, is very close the value found in the Ti/SiO$_2$ system, $57.7 \text{ MW m}^{-2} \text{ K}^{-1}$. This suggests a that when put on top of MoS$_2$, the Ti enhances the TBC between MoS$_2$ and SiO$_2$ in such a way that the MoS$_2$ layer acts as a "skin" to the Ti surface and almost keeps the same TBC as the Ti/SiO$_2$ interface has.
Figure 2: a–d) Snapshots of the four simulation systems consisting of Ti, MoS$_2$, and SiO$_2$. For each system, the temperature profile normal to the plane of MoS$_2$ obtained from the NEMD simulations is shown. The temperature profiles are used to calculate the TBC at each boundary. Figure reprinted from previous publication [1]
TABLE I: CALCULATED THERMAL BOUNDARY CONDUCTANCES

<table>
<thead>
<tr>
<th>TBC-MD</th>
<th>TBC-Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>[MW m⁻² K⁻¹]</td>
<td>[MW m⁻² K⁻¹]</td>
</tr>
<tr>
<td>MoS₂/SiO₂</td>
<td>15.6</td>
</tr>
<tr>
<td>Ti/MoS₂</td>
<td>7.9</td>
</tr>
<tr>
<td>Ti/SiO₂</td>
<td>57.7</td>
</tr>
<tr>
<td>Ti/MoS₂/SiO₂</td>
<td>10.9</td>
</tr>
<tr>
<td>MoS₂/SiO₂ (*)</td>
<td>54.6</td>
</tr>
<tr>
<td>Ti/MoS₂ (*)</td>
<td>13.7</td>
</tr>
<tr>
<td></td>
<td>56-74</td>
</tr>
<tr>
<td></td>
<td>20.3-33.5</td>
</tr>
</tbody>
</table>

TBCs from the MD simulations along with the experimental data from Salehi-Khojin’s group. The top three rows are from single interface systems and the bottom three rows are values from the stacked system (two interfaces). Individual interface values of the stacked system were calculated using the temperature drops between the two sides of the interface. (*) shows the extracted values from triple-stack simulations. Table reprinted from previous publication [1].
CHAPTER 5

CONCLUSIONS

In conclusion, NEMD simulations have for the first time\(^1\) been conducted to investigate the effect on TBC of a 2D material, MoS\(_2\), when inserted between Ti and SiO\(_2\). The simulations show that the TBC of MoS\(_2\) in a stacked system \textit{can not} be modelled as two separate interfaces in a series, and that the full system with substrate, 2D material and metal layer has to be considered to correctly account for the thermal resistance added to the total thermal resistance of the system. Comparing the single interface systems (Ti-MoS\(_2\) and MoS\(_2\)-SiO\(_2\)) to the double interface system (Ti-MoS\(_2\)-SiO\(_2\)), the TBC increases for both the Ti-MoS\(_2\) and the MoS\(_2\)-SiO\(_2\) interfaces when MoS\(_2\) is inserted by a factor of 1.7 and 3.5, respectively. This relatively large effect on the TBC of stacked 2D materials is thus an important factor to consider when designing nano-electronic devices and must be taken into consideration at contact metals and gate dielectrics.

Assuming proper force field parameters exist, the simulation methods used in this study can be generalized to any other metal, substrate or 2D-material. Thus, if one wishes to investigate new materials, the author hopes that this thesis and the published material \([1]\), can serve as a good reference and inspiration to future investigations.

\(^1\)To the best of the author’s knowledge
APPENDICES
Appendix A

PERMISSION FROM JOURNAL

The written permission to use my article published in Advanced Materials Interfaces is presented on the following pages.
This Agreement between Klas Karis ("You") and John Wiley and Sons ("John Wiley and Sons") consists of your license details and the terms and conditions provided by John Wiley and Sons and Copyright Clearance Center.

<table>
<thead>
<tr>
<th>License Number</th>
<th>4160420572252</th>
</tr>
</thead>
<tbody>
<tr>
<td>License date</td>
<td>Aug 01, 2017</td>
</tr>
<tr>
<td>Licensed Content Publisher</td>
<td>John Wiley and Sons</td>
</tr>
<tr>
<td>Licensed Content Publication</td>
<td>Advanced Materials Interfaces</td>
</tr>
<tr>
<td>Licensed Content Title</td>
<td>Interfacial Thermal Transport in Monolayer MoS2- and Graphene-Based Devices</td>
</tr>
<tr>
<td>Licensed Content Date</td>
<td>Jul 13, 2017</td>
</tr>
<tr>
<td>Licensed Content Pages</td>
<td>1</td>
</tr>
<tr>
<td>Type of use</td>
<td>Dissertation/Thesis</td>
</tr>
<tr>
<td>Requestor type</td>
<td>Author of this Wiley article</td>
</tr>
<tr>
<td>Format</td>
<td>Print and electronic</td>
</tr>
<tr>
<td>Portion</td>
<td>Full article</td>
</tr>
<tr>
<td>Will you be translating?</td>
<td>No</td>
</tr>
<tr>
<td>Order reference number</td>
<td>1478965423</td>
</tr>
<tr>
<td>Title of your thesis / dissertation</td>
<td>A Molecular Dynamics Study of the Thermal Boundary Conductance of Stacked Two-Dimensional Materials</td>
</tr>
<tr>
<td>Expected completion date</td>
<td>Sep 2017</td>
</tr>
<tr>
<td>Expected size (number of pages)</td>
<td>100</td>
</tr>
<tr>
<td>Requestor Location</td>
<td>Klas Karis</td>
</tr>
<tr>
<td></td>
<td>845 W. Taylor St. M/C 273</td>
</tr>
<tr>
<td>Publisher Tax ID</td>
<td>EUB26007151</td>
</tr>
<tr>
<td>Billing Type</td>
<td>Invoice</td>
</tr>
<tr>
<td>Billing Address</td>
<td>Klas Karis</td>
</tr>
<tr>
<td></td>
<td>845 W. Taylor St. M/C 273</td>
</tr>
<tr>
<td>Total</td>
<td>0.00 USD</td>
</tr>
</tbody>
</table>

Terms and Conditions
Appendix A (Continued)

This copyrighted material is owned by or exclusively licensed to John Wiley & Sons, Inc. or one of its group companies (each a “Wiley Company”) or handled on behalf of a society with which a Wiley Company has exclusive publishing rights in relation to a particular work (collectively “WILEY”). By clicking “accept” in connection with completing this licensing transaction, you agree that the following terms and conditions apply to this transaction (along with the billing and payment terms and conditions established by the Copyright Clearance Center Inc., (“CCC's Billing and Payment terms and conditions”), at the time that you opened your RightsLink account (these are available at any time at http://myaccount.copyright.com).

Terms and Conditions

- The materials you have requested permission to reproduce or reuse (the “Wiley Materials”) are protected by copyright.

- You are hereby granted a personal, non-exclusive, non-sub licensable (on a stand-alone basis), non-transferable, worldwide, limited license to reproduce the Wiley Materials for the purpose specified in the licensing process. This license, and any CONTENT (PDF or image file) purchased as part of your order, is for a one-time use only and limited to any maximum distribution number specified in the license. The first instance of republication or reuse granted by this license must be completed within two years of the date of the grant of this license (although copies prepared before the end date may be distributed thereafter). The Wiley Materials shall not be used in any other manner or for any other purpose, beyond what is granted in the license. Permission is granted subject to an appropriate acknowledgement given to the author, title of the material/book/journal and the publisher. You shall also duplicate the copyright notice that appears in the Wiley publication in your use of the Wiley Material. Permission is also granted on the understanding that nowhere in the text is a previously published source acknowledged for all or part of this Wiley Material. Any third party content is expressly excluded from this permission.

- With respect to the Wiley Materials, all rights are reserved. Except as expressly granted by the terms of the license, no part of the Wiley Materials may be copied, modified, adapted (except for minor reformatting required by the new Publication), translated, reproduced, transferred or distributed, in any form or by any means, and no derivative works may be made based on the Wiley Materials without the prior permission of the respective copyright owner. For STM Signatory Publishers clearing permission under the terms of the STM Permissions Guidelines only, the terms of the license are extended to include subsequent editions and for editions in other languages, provided such editions are for the work as a whole in situ and does not involve the separate exploitation of the permitted figures or extracts, You may not alter, remove or suppress in any manner any copyright, trademark or other notices displayed by the Wiley Materials. You may not license, rent, sell, loan, lease, pledge, offer as security, transfer or assign the Wiley Materials on a stand-alone basis, or any of the rights granted to you hereunder to any other person.

- The Wiley Materials and all of the intellectual property rights therein shall at all times remain the exclusive property of John Wiley & Sons Inc, the Wiley Companies, or their respective licensors, and your interest therein is only that of having possession of and the right to reproduce the Wiley Materials pursuant to Section 2 herein during the continuance of this Agreement. You agree that you own no right, title or interest in or to the Wiley Materials or any of the intellectual property rights therein. You shall have no rights hereunder other than the license as provided for above in Section 2. No right, license or interest to any trademark, trade name, service mark or other branding
Appendix A (Continued)

(“Marks”) of WILEY or its licensors is granted hereunder, and you agree that you shall not assert any such right, license or interest with respect thereto

- NEITHER WILEY NOR ITS LICENSORS MAKES ANY WARRANTY OR REPRESENTATION OF ANY KIND TO YOU OR ANY THIRD PARTY, EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO THE MATERIALS OR THE ACCURACY OF ANY INFORMATION CONTAINED IN THE MATERIALS, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTY OF MERCHANTABILITY, ACCURACY, SATISFACTORY QUALITY, FITNESS FOR A PARTICULAR PURPOSE, USABILITY, INTEGRATION OR NON-INFRINGEMENT AND ALL SUCH WARRANTIES ARE HEREBY EXCLUDED BY WILEY AND ITS LICENSORS AND WAIVED BY YOU.

- WILEY shall have the right to terminate this Agreement immediately upon breach of this Agreement by you.

- You shall indemnify, defend and hold harmless WILEY, its Licensors and their respective directors, officers, agents and employees, from and against any actual or threatened claims, demands, causes of action or proceedings arising from any breach of this Agreement by you.

- IN NO EVENT SHALL WILEY OR ITS LICENSORS BE LIABLE TO YOU OR ANY OTHER PARTY OR ANY OTHER PERSON OR ENTITY FOR ANY SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT, EXEMPLARY OR PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING OUT OF OR IN CONNECTION WITH THE DOWNLOADING, PROVISIONING, VIEWING OR USE OF THE MATERIALS REGARDLESS OF THE FORM OF ACTION, WHETHER FOR BREACH OF CONTRACT, BREACH OF WARRANTY, TORT, NEGLIGENCE, INFRINGEMENT OR OTHERWISE (INCLUDING, WITHOUT LIMITATION, DAMAGES BASED ON LOSS OF PROFITS, DATA, FILES, USE, BUSINESS OPPORTUNITY OR CLAIMS OF THIRD PARTIES), AND WHETHER OR NOT THE PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THIS LIMITATION SHALL APPLY NOTWITHSTANDING ANY FAILURE OF ESSENTIAL PURPOSE OF ANY LIMITED REMEDY PROVIDED HEREIN.

- Should any provision of this Agreement be held by a court of competent jurisdiction to be illegal, invalid, or unenforceable, that provision shall be deemed amended to achieve as nearly as possible the same economic effect as the original provision, and the legality, validity and enforceability of the remaining provisions of this Agreement shall not be affected or impaired thereby.

- The failure of either party to enforce any term or condition of this Agreement shall not constitute a waiver of either party’s right to enforce each and every term and condition of this Agreement. No breach under this agreement shall be deemed waived or excused by either party unless such waiver or consent is in writing signed by the party granting such waiver or consent. The waiver by or consent of a party to a breach of any provision of this Agreement shall not operate or be construed as a waiver of or consent to any other or subsequent breach by such other party.

- This Agreement may not be assigned (including by operation of law or otherwise) by you without WILEY’s prior written consent.
Appendix A (Continued)

- Any fee required for this permission shall be non-refundable after thirty (30) days from receipt by the CCC.

- These terms and conditions together with CCC's Billing and Payment terms and conditions (which are incorporated herein) form the entire agreement between you and WILEY concerning this licensing transaction and (in the absence of fraud) supersedes all prior agreements and representations of the parties, oral or written. This Agreement may not be amended except in writing signed by both parties. This Agreement shall be binding upon and inure to the benefit of the parties' successors, legal representatives, and authorized assigns.

- In the event of any conflict between your obligations established by these terms and conditions and those established by CCC's Billing and Payment terms and conditions, these terms and conditions shall prevail.

- WILEY expressly reserves all rights not specifically granted in the combination of (i) the license details provided by you and accepted in the course of this licensing transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment terms and conditions.

- This Agreement will be void if the Type of Use, Format, Circulation, or Requestor Type was misrepresented during the licensing process.

- This Agreement shall be governed by and construed in accordance with the laws of the State of New York, USA, without regards to such state's conflict of law rules. Any legal action, suit or proceeding arising out of or relating to these Terms and Conditions or the breach thereof shall be instituted in a court of competent jurisdiction in New York County in the State of New York in the United States of America and each party hereby consents and submits to the personal jurisdiction of such court, waives any objection to venue in such court and consents to service of process by registered or certified mail, return receipt requested, at the last known address of such party.

WILEY OPEN ACCESS TERMS AND CONDITIONS

Wiley Publishes Open Access Articles in fully Open Access Journals and in Subscription Journals offering Online Open. Although most of the fully Open Access journals publish open access articles under the terms of the Creative Commons Attribution (CC BY) License only, the subscription journals and a few of the Open Access Journals offer a choice of Creative Commons Licenses. The license type is clearly identified on the article.

The Creative Commons Attribution License
The Creative Commons Attribution License (CC-BY) allows users to copy, distribute and transmit an article, adapt the article and make commercial use of the article. The CC-BY license permits commercial and non-

Creative Commons Attribution Non-Commercial License
The Creative Commons Attribution Non-Commercial (CC-BY-NC) License permits use, distribution and reproduction in any medium, provided the original work is properly cited, and is not used for commercial purposes. (see below)

Creative Commons Attribution-Non-Commercial-NoDerivs License
The Creative Commons Attribution Non-Commercial-NoDerivs License (CC-BY-NC-ND) permits use, distribution and reproduction in any medium, provided the original work is properly cited, is not used for commercial purposes and no modifications or adaptations are made. (see below)

Use by commercial “for-profit” organizations
Appendix A (Continued)

Use of Wiley Open Access articles for commercial, promotional, or marketing purposes requires further explicit permission from Wiley and will be subject to a fee. Further details can be found on Wiley Online Library http://olabout.wiley.com/WileyCDA/Section/id-410895.html

Other Terms and Conditions:

v1.10 Last updated September 2015
Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or +1-978-646-2777.
CITED LITERATURE

VITA

Personal Information

Name Klas Karis
Date of Birth 24-MAR-1988
Place of Birth Stockholm, Sweden

Education:

M.Sc. Physics, University of Illinois at Chicago (UIC), Chicago, USA
Exchange Year Institut Polytechnique de Grenoble (INPG) Grenoble, France

Publications:

Published

Other Manuscripts:

Languages spoken by the author

- **Swedish**: Native
- **English**: Fluent
- **French**: Experienced